Computing group cohomology rings from the Lyndon-Hochschild-Serre spectral sequence

نویسندگان

  • Graham Ellis
  • Paul Smith
چکیده

We describe a method for computing presentations of cohomology rings of small finite p-groups. The description differs from other accounts in the literature in two main respects. First, we suggest some techniques for improving the efficiency of the obvious linear algebra approach to computing projective resolutions over a group algebra. Second, we use an implementation of the multiplicative structure of the Lyndon-Hochschild-Serre spectral sequence for determining how much of a projective resolution needs to be computed in order to obtain a presentation of the cohomology ring.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE GROUP COHOMOLOGY OF THE SEMI-DIRECT PRODUCT Z ⋊ρ Z/m AND A CONJECTURE OF ADEM-GE-PAN-PETROSYAN

Consider the semi-direct product Z ⋊ρ Z/m. A conjecture of Adem-Ge-Pan-Petrosyan predicts that the associated Lyndon-Hochschild-Serre spectral sequence collapses. We prove this conjecture provided that the Z/maction on Z is free outside the origin. We disprove the conjecture in general, namely, we give an example with n = 6 and m = 4, where the second differential does not vanish.

متن کامل

A Hochschild-serre Spectral Sequence for Extensions of Discrete Measured Groupoids Roman Sauer and Andreas Thom

We construct a Hochschild-Serre spectral sequence for L-type cohomology groups of discrete measured groupoids using a blend of tools from homological algebra and ergodic theory. Applications include a theorem about existence of normal amenable subrelations in measured equivalence relations, results about possible stabilizers of measure preserving group actions, and vanishing results or explicit...

متن کامل

The Cohomology of Split Extensions of Elementary Abelian 2-groups and Totaro's Example

In a previous paper we derived an expression for the di erentials in the Lyndon-Hochschild-Serre spectral sequence of a split extension G = HoQ of nite groups with coe cients in a eld. Here we apply that result to the case where H and Q are elementary abelian 2-groups and char k = 2. We then work out a special case, in which H has rank 4 and Q has rank 2, from a class of examples constructed by...

متن کامل

On the Cohomology of Split Extensions of Finite Groups

Let G = HoQ be a split extension of nite groups. A theorem of Charlap and Vasquez gives an explicit description of the di erentials d2 in the Lyndon-Hochschild-Serre spectral sequence of the extension with coe cients in a eld k. We generalize this to give an explicit description of all the dr (r 2) in this case. The generalization is obtained by associating to the group extension a new twisting...

متن کامل

On the Second Cohomology Categorical Group and a Hochschild-serre 2-exact Sequence

Résumé. We introduce the second cohomology categorical group of a categorical group G with coefficients in a symmetric G-categorical group and we show that it classifies extensions of G with symmetric kernel and a functorial section. Moreover, from an essentially surjective homomorphism of categorical groups we get 2-exact sequences à la Hochschild-Serre connecting the categorical groups of der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Comput.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2011